Abstract

The relation between high-harmonic spectra and the geometry of the molecular orbital in position and momentum space is investigated. In particular we choose two isoelectronic pairs of homonuclear and heteronuclear molecules, such that the highest occupied molecular orbital of the former exhibits at least one nodal plane. The imprint of such planes is a strong suppression in the harmonic spectra, for particular alignment angles. We are able to identify two distinct types of nodal structures. If, for homonuclear molecules, the nodal planes are determined by the atomic wavefunctions only, the angle for which the yield is suppressed will remain the same for both types of molecules. In contrast, if they are determined by the linear combination of atomic orbitals at different centers of the molecule, there will be a shift in the angle at which the suppression occurs and a distortion in the nodal structure for the heteronuclear molecule, with respect to its homonuclear counterpart. This shows that, in principle, molecular imaging, in which a homonuclear molecule is used as a reference while observing the wavefunction distortions in its heteronuclear counterpart, is possible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.