Abstract

Recent in vitro and in vivo studies have suggested transscleral iontophoresis as a means for non-invasive drug delivery to the eye. However, there remains a lack of information of the iontophoretic transport behavior of the sclera. The objective of the present study was to investigate the effects of permeant concentration upon transscleral iontophoretic transport. Constant current direct current (DC) iontophoresis was conducted with rabbit sclera in vitro at permeant concentration ranging from 0.015 to 1.0 M in the donor chamber without background electrolyte at 0.4-4 mA (current density: 2-20 mA/cm2). PBS (0.15 M) was the receiver solution. Salicylate (SA) and tetraethylammonium (TEA) were the model ionic permeants, and mannitol was the neutral probe permeant. Conductivity experiments of SA and TEA solutions were performed to determine the effects of ion concentration upon SA and TEA electromobilities. Model simulations were carried out and compared with the experimental data. It was found that the fluxes of the ionic permeants increased linearly with the electric current but were relatively independent of their donor concentrations. Electric field-induced convective solvent flow (electroosmosis) in the sclera was observed to be from the anode to cathode, suggesting that the sclera is net negatively charge at neutral pH. For the studied permeants, electrophoresis was the main transport enhancing mechanism with electroosmosis as a secondary effect. No significant interaction between the permeants and sclera was observed that significantly altered electroosmosis in the membrane. Under the asymmetric donor and receiver conditions, the transference of the permeants could not be predicted by the concentrations of the ions in the donor and receiver chambers with the assumption of constant electric field in the membrane. The membrane ion concentrations were different from those in the chambers due to the requirement of charge neutrality in the membrane.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call