Abstract

Himalayan forest has been threatened by rapid anthropogenic activities, resulting in the loss of forest diversity and climate change. The present study was carried out on four aspects (northern, southern, western and eastern), at three different altitudinal ranges, namely, 1000–1300 m above sea level (m a.s.l.), 1300–1600 m a.s.l. and 1600–1900 m a.s.l., and at three diverse mountain ranges (Kalaghat, Barog and Nangali) of sub-temperate forest ecosystems of the mid Himalayan ranges, to elucidate their influence on vegetation, tree characteristics and ecosystem carbon density. The results revealed that Pinus roxburghii is the most dominant forest community of the mid Himalaya’s forest, irrespective of altitudinal gradient and slope. The south-facing slopes are occupied by the xerophytic tree species frequently found in the lower Shiwalik P. roxburghii forest, whereas the north-facing ones are dominated by mesophyllic species, such as Cedrus deodara and Quercus leucotrichophora, which commonly grows in the northwestern Himalayan temperate forest ecosystem. The maximum stem density (211.00 Nha−1) was found at 1000–1300 m a.s.l., and on the northern aspect (211.00 Nha−1). The maximum stem volume (236.50 m3 ha−1) was observed on the northern aspect at 1000–1300 m a.s.l., whereas the minimum (32.167 m3 ha−1) in the southern aspect at 1300–1600 m a.s.l. The maximum carbon density (149.90 Mg ha−1) was found on the northern aspect and declined with increasing elevation from 123.20 to 74.78 Mg ha−1. Overall, the study establishes that the southern and western aspects are very low in carbon density, whereas the northern aspect represents higher biodiversity as well as carbon and nutrient stocks. Therefore, aspect and altitude should be given due importance for efficient managing of biodiversity and mitigating climate change.

Highlights

  • In recent decades, Himalayan forest has been threatened by rapid anthropogenic activities, resulting in the loss of forest diversity and climate change

  • Among the three altitudinal ranges, the AR2 altitude range displayed the highest number of tree species, i.e., 14, while the lowest number was at AR3 (7)

  • S-and W-facing slopes are very poor on account of their carbon density; they should be the focus of the attention of plantation programs, such as joint forest management and REDD/REDD+

Read more

Summary

Introduction

Himalayan forest has been threatened by rapid anthropogenic activities, resulting in the loss of forest diversity and climate change. Vegetation cover plays a crucial role in local, regional and global climate apart from decreasing erosion in mountain areas [4]. By adopting sustainable environmental management practices, the protection of mountainous habitats (biological diversity) will help in safeguarding livelihoods and further improvement of local communities. They shield individuals effectively from natural calamities, e.g., debris flows, floods and landslides [5]. Several biotic (e.g., intensity of photosynthesis, leaf area index, forest types and plant architecture) and abiotic characteristics (e.g., solar radiation, temperature, soil moisture and length of growing season) affect carbon cycling and further affect the regional and/or global carbon budget [18,19,20,21]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.