Abstract
Interfacial reactions occurring between molten iron and carbonaceous materials are of great significance in the steel industry, and specifically, the reaction of iron with metallurgical coke is one of the key phenomena occurring during blast furnace ironmaking. Major operating parameters such as hot metal composition will be directly influenced by the reactions occurring between liquid iron and coke. In the current investigation, the interfacial reactions occurring between coke and liquid iron were studied at a temperature of 1550 °C using the sessile drop method to further the understanding of the fundamental reactions occurring at the interface between coke and iron. The formation of interfacial reaction products was observed, and time-dependent reactions were identified. The transfer of elements such as carbon, sulfur, and silicon was determined. The reduction of silica was determined as having a major influence on the transfer of both silicon and carbon into liquid iron.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.