Abstract

BackgroundThe posterior quadrants of the tibial plateau are frequently involved in OTA type C tibial plateau fractures. The biomechanical influence of a residual articular step-off of the posterolateral-central (PLC) segment, which is difficult to visualize intraoperatively, remains unclear.Therefore, aim of this study was to investigate the contact area and stress of the tibial plateau in cases of different articular step-offs of the PLC segment. MethodsSeven human cadaveric knees were used to simulate articular impressions of the PLC segment with step-offs of 1 mm, 3 mm, and 5 mm. The knees were axially loaded up to 150 N during a total of 25 dynamic cycles of knee flexion up to 90°. Pressure mapping sensors were inserted into the medial and lateral joint compartments beneath the menisci to measure articular contact area and stress. ResultsBetween 60° and 90° of knee flexion, increasing PLC segment impressions of the tibial plateau led to increasing contact stress and a significantly reduced contact area. The largest decrease in the contact area was 30 %, with an articular step-off of 5 mm (0.003). An increase in contact stress, especially from a 3-mm step-off, was measured, with a doubling of the mean contact stress at 3-mm and 5-mm step-offs and 90° knee flexion (p = 0.06/0.05). ConclusionFrom a biomechanical point of view, posterior impressions of the PLC segment greater than a 1-mm step-off should be addressed as anatomically as possible, especially in active patients with the need for higher knee flexion angles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call