Abstract

This finite element analysis was conducted to determine changes in stress concentration in relation to different alveolar arch shapes of the maxilla. Five different maxillary alveolar arch shape measurements coded as shortest ellipsoid shape and medium width, longest ellipsoid shape and narrow, U-shaped long and narrow, U-shaped short and wide, and U-shaped medium length and medium width were obtained, and 5 different implant distribution strategies coded on the basis of a tooth number as 3,4,5; 2,3,4; 1,3,5; and 2,4,5 (total of 6 implants) and 2,3,4,5 (total of 8 implants) were plotted in each of the 5 maxillary arch models. The implants were assumed to support a 12-unit bridge with first molars region being the cantilever area. Combination of 5 different arch shapes, 5 different implant distributions, and 2 different loading points (anterior and posterior) led to 50 different simulated scenarios that are all solved and compared. In case of either anterior or posterior loading, the most favorable implant distribution strategies for the arch models are as follows: 2,4,5 and 2,3,4,5 for longest ellipsoid shape and narrow; 2,4,5 and 2,3,4,5 for shortest ellipsoid shape and medium width; 1,3,5 and 2,3,4,5 for U-shaped long and narrow; 2,3,4,5 and 2,4,5 for U-shaped medium length and medium width; and 1,3,5 and 2,3,4,5 for U-shaped short and wide. Distribution of implants in 2,4,5 order seemed to be fairly favorable for ideal stress distribution in all simulated models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.