Abstract

To measure the influence of arch location and scanning pattern on the accuracy, scanning time, and number of photograms of complete-arch implant scans acquired using an intraoral scanner (IOS). A maxillary (maxillary group) and mandibular (mandibular group) model with 6 implant abutments on each cast was digitized using a desktop scanner (control scans). Six subgroups were created based on the scanning pattern used to acquire the scans using an IOS (Trios 4): occluso-buccal-lingual (OBL subgroup), occluso-linguo-buccal (OLB subgroup), bucco-linguo-occlusal (BLO subgroup), linguo-buccal-occlusal (LBO subgroup), zigzag (ZZ subgroup), and circumferential (C subgroup). The control scans were used as a reference to measure the discrepancy with the experimental scans calculating the root mean square error. Two-way ANOVA and the pairwise comparison Tukey tests were used to analyze the data (α = .05). Significant discrepancies in trueness (p < .001), precision (p < .001), scanning time (p < .001), and number of photograms (p < .001) were found. The maxillary group obtained poorer trueness and precision values, higher scanning times, and a larger number of photograms than the mandibular group. The C subgroup obtained the best trueness and precision values, but was not significantly different from the OLB, BLO, and LBO subgroups. The ZZ subgroup obtained the worst trueness and precision values (p < .05). The C subgroup obtained the lowest scanning time and number of photograms (p < .05). Arch location and scanning pattern influenced scanning accuracy, scanning time, and number of photograms of complete-arch implant scans.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call