Abstract
Salt stress has become a severe global problem, and salinity is one of the most important abiotic factors limiting plant growth and yield. It is known that arbuscular mycorrhizal (AM) fungi decrease plant yield losses under salinity. With the aim of determining whether AM inoculation would give an advantage to root development under salt stress, a greenhouse experiment was carried out with AM or without AM fungi. Maize plants were grown in a sand and soil mixture with 5 NaCl levels (0, 0.5, 1.0, 1.5, and 2.0 g/kg dry substrate) for 55 days, following 15 days of nonsaline pretreatment. At all salt levels, mycorrhizal plants had higher dry shoot and root mass, higher root activity, and lower root to shoot ratios than non-mycorrhizal plants. In salt-free soil, root length, root surface area, root volume, and number of root tips and forks were significantly larger in mycorrhizal plants than in non-mycorrhizal plants, whereas, under salt stress, average root diameter and root volume of mycorrhizal plants were larger than those of non-mycorrhizal plants. Regardless of the NaCl level, mycorrhizal plants had lower specific root length, lower percentage of root length in the 0-0.2 mm diameter class, and higher percentage of root length in both the 0.2-0.4 mm and 0.4-0.6 mm diameter classes, which suggests that the root system shows a significant shift towards a thicker root system when maize plants were inoculated with Glomus mosseae (Nicolson & Gerdemann). The results presented here indicate that the improvements in root activity and the coarse root system of mycorrhizal maize may help in alleviating salt stress on the plant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.