Abstract

Effects of selected aqueous phase emulsifiers on lipid oxidative stability of water-in-walnut oil (W/O) emulsions stabilized by polyglycerol polyricinoleate (PGPR) were evaluated. The formation of primary oxidation products (lipid hydroperoxides) and secondary oxidation products (headspace hexanal) increased with increasing dodecyltrimethylammonium bromide (DTAB) concentration (0.1-0.2 wt % of emulsions). In contrast, the addition of sodium dodecyl sulfate (SDS) in the aqueous phase reduced lipid hydroperoxide and hexanal formation. In addition, the presence of Tween 20 in the aqueous phase did not significantly influence lipid oxidation rates in W/O emulsions compared to the control (without Tween 20). Whey protein isolate (WPI) was observed to inhibit lipid oxidation in the W/O emulsions (0.05-0.2 wt % of emulsions). Aqueous phase pH had an important impact on the antioxidant capability of WPI, with higher pH improving its ability to inhibit lipid oxidation. The combination of WPI and DTAB in the aqueous phase suppressed the prooxidant effect of DTAB. The combination of WPI and SDS resulted in improved antioxidant activity, with inhibition being greater at pH 7.0 than at pH 3.0. These results suggest that the oxidative stability of W/O emulsions could be improved by the use of suitable emulsifiers in the aqueous phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call