Abstract

Human exposure to particulate matter (PM) originating from air pollution is inevitable since more and more population is present in large cities that are characterized by poor air quality. The impact on human health is evident and we need to intensify research regarding this problem to get molecular insight into versatile effects of chronic exposure to PM inducing organism responses and initiating the development of selected disorders. Herein, the impact of standard PM representing urban pollution on the structure and function of human serum albumin (HSA) was evaluated by the application of various analytical techniques. HSA was selected due to its high likeliness of being exposed to PM because of the abundance of this protein in blood. The studies were focused mainly on the inorganic residue of PM resulting from removing organic components by a low-temperature plasma. To mimic physiological conditions, dialysis technique was used to simulate the release of nanoparticles and ions from PM to aqueous environment under, which in turn may interact with biomolecules inside the living system. Capture of metals from the bulk suspension was found for many metals like Al, Fe, Zn and Pb in quantities of more than 1 mol of metal ions per mole of HSA. No significant structural changes of the protein upon dialysis with PM were observed, however, an increase in the thermal stabilization of the HSA structure was observed. Moreover, the interaction of HSA dialyzed in the presence of PM with selected drugs (warfarin, aspirin) was negatively affected, indicating a lower affinity of drugs towards the protein, even though only small conformational changes of the PM exposed protein were observed. Our findings point to a possible interference of air pollutants with the drugs taken by patients living in highly polluted areas.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.