Abstract
The air-breathing electric propulsion concept refers to a spacecraft in very-low Earth orbit (VLEO) ingesting upper atmospheric air as propellant for an electric thruster. This compensates atmospheric drag and allows the spacecraft to maintain its orbital altitude, removing the need for on-board propellant storage and allowing an extended mission duration which is not limited by propellant exhaustion. There is a need for development of a robust, high current density and long life cathode (or neutralizer) for air-breathing electrostatic thrusters as conventional thermionic hollow cathodes are susceptible to oxygen poisoning. An Air-breathing Microwave Plasma CAThode is proposed to overcome this issue through the use of a microwave plasma discharge, producing an extracted current in the order of 1 A with 0.1 mg s−1 of air. In this paper, the effect of varying magnetic-field strength and topology is investigated by using an electromagnet coil, which reveals a significantly different behaviour for air compared to xenon. The extracted current with xenon increases by 3.9 times from the zero-field value up to a peak around 150 mT magnetic-field strength at the antenna, whereas an applied field does not increase the extracted current with air at nominal conditions. A non-zero magnetic-field with air is however beneficial for current extraction at reduced neutral densities. A distinct increase in extracted current is identified at low bias voltages with air for a field strength of around 50 mT at the internal microwave antenna, consistent across varying field topologies. The effect of a lowered magnetic-field strength in the orifice region is investigated through the use of a secondary coil, resulting in an extracted current increase of 25% for a relaxation from 6 mT to 1 mT, and demonstrating the beneficial impact of a locally reduced field strength on electron extraction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.