Abstract

Synthetic auxin herbicides have long been utilized for the selective control of broadleaf weeds in a variety of crop and noncrop environments. Recently, two agrochemical companies have begun to develop soybean with resistance to 2,4-D and dicamba which might lead to an increase in the application of these herbicides in soybean production areas in the near future. Additionally, little research has been published pertaining to the effects of a newly-discovered synthetic auxin herbicide, aminocyclopyrachlor, on soybean phytotoxicity. Two field trials were conducted in 2011 and 2012 to evaluate the effects of sublethal rates of 2,4-D amine, aminocyclopyrachlor, aminopyralid, clopyralid, dicamba, fluroxypyr, picloram, and triclopyr on visible estimates of soybean injury, height reduction, maturity, yield, and yield components. Each of these herbicides was applied to soybean at the V3 and R2 stages of growth at 0.028, 0.28, 2.8, and 28 g ae ha−1. Greater height reductions occurred with all herbicides, except 2,4-D amine and triclopyr when applied at the V3 compared to the R2 stage of growth. Greater soybean yield loss occurred with all herbicides except 2,4-D amine when applied at the R2 compared to the V3 stage of growth. The only herbicide applied that resulted in no yield loss at either stage was 2,4-D amine. When applied at 28 g ae ha−1at the V3 stage of growth, the general order of herbicide-induced yield reductions to soybean from greatest to least was aminopyralid > aminocyclopyrachlor = clopyralid = picloram > fluroxypyr > triclopyr > dicamba > 2,4-D amine. At the R2 stage of growth, the general order of herbicide-induced yield reductions from greatest to least was aminopyralid > aminocyclopyrachlor = picloram > clopyralid > dicamba > fluroxypyr = triclopyr > 2,4-D amine. Yield reductions appeared to be more correlated with seeds per pod than to pods per plant and seed weight. An 18- to 26-d delay in soybean maturity also occurred with R2 applications of all synthetic auxin herbicides at 28 g ae ha−1except 2,4-D. Results from this research indicate that there are vast differences in the relative phytotoxicity of these synthetic auxin herbicides to soybean, and that the timing of the synthetic auxin herbicide exposure will have a significant impact on the severity of soybean height and/or yield reductions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call