Abstract

Sufficient conditions are given for asymptotic stability of the linear differential system x′ = B(t)x with B(t) being a 2 × 2 matrix. All components of B(t) are not assumed to be positive. The matrix B(t) is naturally divisible into a diagonal matrix D(t) and an anti-diagonal matrix A(t). Our concern is to clarify a positive effect of the anti-diagonal part A(t)x on the asymptotic stability for the system x′ = B(t)x.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.