Abstract

Abstract In the present study, thick and dense niobium coatings were obtained using cold spray technique by using air as a process gas. Inter-splat boundaries are completely removed in the coatings heat treated at 1500 °C by the formation of equiaxed grains. Heat treatment reduces the porosity level to ~ 0.1%. Inter-splat boundary bonding state of the heat treated coatings was investigated using micro-tensile testing, scratch testing and nanoindentation and compared with the bulk niobium. The elastic modulus of the cold spray coatings heat treated at 1500 °C exhibits as high as 103 GPa whereas the same for bulk is 105 GPa. The increase in mechanical strength of inter-splat boundary from as -sprayed condition to 1500 °C was estimated to be 750%. Similarly corrosion performance of heat treated coatings was also evaluated in 1 M KOH solution through potentiodynamic polarization as well as impedance spectroscopy studies. The corrosion rate for the coatings heat treated at 1500 °C was estimated to be 0.443 MPY which is comparable for the bulk (0.498 MPY). Coatings annealed at 1250 °C and above, which is very close to the recrystallization temperature of niobium, were found to perform almost as bulk niobium indicating exciting implications for various applications. Assessment of structure–property correlations was done based on the microstructure, porosity and inter-splat bonding state, together with the mechanical and corrosion properties of the heat treated tantalum cold sprayed coatings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.