Abstract

In this paper, the effect of radial anisotropy on optical bistability in the cylindrical nanoshells is theoretically investigated within the quasi-static approximation. We consider two cases: when the shell is anisotropic and the core is nonlinear metal and when the core is anisotropic and the shell is a nonlinear metal. The dependence of optical bistability on the size of the nonlinear/anisotropic shell or core, the embedding medium, the anisotropy parameter, and the type of noble metals as candidates for plasmonics is studied and demonstrated. We show that by changing the type of the plasmonic metal, the switching threshold field changes can be used to design nanoparticle-based all-optical sensors. It is also shown that significant optical bistability and all-optical switching behavior can be obtained in the cylindrical nanoshells due to nonlinearity enhancement via the plasmonic structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call