Abstract

Some computational results on dendritic growth in binary alloy are obtained by using a phase–field model coupled the solute gradient term. The effect of crystalline anisotropy on the morphological formation, tip steady state and the solute partition is investigated for different dendrites. The interface formation and tip steady state are affected evidently with increase in anisotropy for ‹100› dendrite growth, but the solute partition coefficient is not significantly influenced. For ‹110› preferred growth directions, when the anisotropy strength is lower than the critical value, the tip velocity of [110] direction is lower than [101] and [011] directions. As the anisotropy strength crosses the critical value, the tip velocity of [110] direction increases suddenly, larger than the tip velocity of [101] and [011] directions, showing strong solute trapping.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.