Abstract

We report the experimental study of the impact of anion adsorption on the two parallel pathways of CO2 formation during the electro-oxidation of methanol on platinum. The effect of nature of the supporting electrolyte (HClO4 and H2SO4) was investigated at two methanol concentrations. Voltammetric profiles and oscillatory time series of the electrode potential were registered in conjunction with the evolution of the production of carbon dioxide and methylformate, as measured by means of on line differential electrochemical mass spectrometry (DEMS). In all conditions studied, the production of CO2 was higher in the presence of HClO4 rather than that in H2SO4. Importantly, the inhibition caused by anion adsorption was generally more pronounced in the direct pathway, i.e., the non-COad pathway. Furthermore, we have noted an additional peak commonly observed at high potentials during the oscillatory electro-oxidation of small organic molecules can be generally attributed to the oxidative removal of COad. Altogether, the effect of anion adsorption is discussed in connection with both the oscillatory kinetics and the dynamics of adsorbed species, contributing thus to a comprehensive physical-chemistry description of the surface processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call