Abstract

In the present work, the influence of intrinsic angular momentum on transport coefficients in a single-component gas flow is studied on the basis of the generalized Chapman–Enskog method. A self-consistent set of flow equations is derived, both for an inviscid and viscous flow approximations. It is shown that when angular momentum is considered, the shear viscosity coefficient is a tensor of rank 4, the thermal conductivity coefficient is a tensor of rank 2. The presence of cross-coupling between the heat flux and flux of angular momentum is also demonstrated. Numerical results for the thermal conductivity coefficient, coefficient of coupling between angular momentum and heat fluxes, as well as the bulk viscosity are presented for the case of 2-dimensional flow of atomic hydrogen.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.