Abstract

Background. One of the key differences between the aeronautical and space optical-electronic viewing systems (OEVS) of remote sensing of the Earth is the height from which the Earth's surface picture is taken. The difference between the heights of aircraft and spacecraft devises can reach several orders of magnitude, so if for aeronautical OEVS you can calculate spatial division on a plane, then for space OEVS this is critical and it is necessary to additionally consider the Earth's surface curvature, especially for angles of sighting other than zero.Objective. The aim of the paper is to develop physico-mathematical model for determining the resolution of the OEVS, which considers the Earth's surface curvature, the orbital height and location of the spacecraft position for different angles of shighting.Methods. In the basis of physical and mathematical model is proposed to use a biaxial ellipsoid as an approximation of the Earth shape to determine its surface curvature and Sun-synchronous orbit trajectory.Results. Practical results of the calculations prove that the Earth's surface curvature for space OEVS significantly influence the spatial resolution and differs from the results obtained by physical and mathematical model in which the spatial resolution is determined on a flat surface. The results of the design show, that when deflected at the angles of shighting, it is necessary to consider the additional deflection in calculations, which it increases, when distance increases for the nadir. At maximum angles of sight, pitch and roll to ±35º, i.e. when the OEVS is deflected at 44.7º from the nadir, the additional deflection is 6.3º, which significantly influences the determination of spatial resolution.Conclusions. The analysis of the proposed the physico-mathematical model of the OEVS showed that the Earth's surface curvature orbit trajectory and the location of the spacecraft, unlike the height, influence the pixels’ projection shape deformation. In this case, the values of the projection tilt angles of the rows and columns of the matrix detector relative to the flight direction change nonlinearly, which adversely influence the system modulation transfer function and require the calibration for some parameters during the flight depending on the angles of shighting and location coordinates.

Highlights

  • One of the key differences between the aeronautical and space optical-electronic viewing systems (OEVS) of remote sensing of the Earth is the height from which the Earth's surface picture is taken

  • Приклади розрахунку просторового розділення та кутів відхилення рядків і колонок Розглянемо оптичну систему, що встановлена на борту космічним апаратом (КА), який знаходиться на орбітальній висоті в h = 668 [км], об’єктив має фокусну відстань f o = 112,8 [мм]; матричного приймача випромінювання (МПВ) має qD = 4097 [пікселів] і pD = NTDI = 33 [пікселя], період пікселів становить VD WD = 17 17 [мкм], коефіцієнт заповнення пікселя 100 %; поворот на кут рискання = 0 — не здійснюється; центр приймача розміщений на оптичній осі; порядок відхилення за кутами “тангаж—крен”, широта Землі, де знаходиться КА, = 50

  • Кути відхилення колонок відносно напрямку польоту c дають змогу не тільки оцінити деформацію проекції матричного приймача випромінювання (МПВ) на земної поверхні (ЗП), а й якість отримуваного зображення, особливо для ПЗЗ-лінійок

Read more

Summary

Introduction

One of the key differences between the aeronautical and space optical-electronic viewing systems (OEVS) of remote sensing of the Earth is the height from which the Earth's surface picture is taken. Тому однією з основних задач, яка ставиться в цьому випадку, є точне визначення спотворення проекції пікселів МПВ з урахуванням кривизни ЗП при відхиленні від надира.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call