Abstract

The AlCoCrFeNi2.1 eutectic high-entropy alloy (EHEA) is regarded as a promising candidate for structural materials in high-temperature equipment, which may experience the cyclic creep and anelastic recovery caused by low-frequency peak-shaving loading. To investigate the influence of anelastic recovery on the microstructure and cyclic creep behavior of AlCoCrFeNi2.1 EHEA, the stress-varying (SV) tests at 800 °C are conducted to introduce the anelastic strain for comparison with the stress-constant (SC) test. The results show that the steady-state creep rate (SSCR) is accelerated with the increase in the cyclic-creep cycle and valley stress in SV tests. The anelastic recovery happened during the valley-stress holding (VSH) stage significantly alters the microstructure in the B2 phase of EHEA under SV conditions. This anelastic-recovery-related microstructural evolution is subsequently elucidated on the basis of back stress theory. Finally, the influence of microstructural evolution on the cyclic creep behaviour is revealed. The findings obtained will enhance the comprehension of high-temperature deformation mechanism of dual-phase EHEAs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call