Abstract

This study evaluated the rheological behavior of the pig waste biotransformation process to produce lactic acid (LA) and biomass with Lactobacillus acidophilus in a stirred reactor. In addition, cell growth, carbohydrate consumption, and LA production were measured at three different agitation speeds, 100, 150, and 200rpm at 37°C, with a reaction time of 52h. During the development of the process, the kinetic and rheological parameters were obtained using the logistic, Gompertz, generalized Gompertz, Ostwald de Waele, and Herschel-Bulkley mathematical models, respectively. The substrate used was pig manure, to which molasses was added at 12% v/v to increase the concentration of carbohydrates. The results suggest that mass exchange is favorable at low agitation speeds. Nevertheless, the presence of molasses rich in carbohydrates as a carbon source modifies the characteristics of the fluid, dilatant (n > 1) at the beginning of the process to end up as pseudoplastic (n < 1) due to the addition of exopolysaccharides and the modification of the physical structure of the substrate. This effect was confirmed by the Herschel-Bulkley model, which presented a better fit to the data obtained, in addition to finding a direct relationship between viscosity and pH that can be used as variables for the control of bioconversion processes of pig manure into biomass rich in Lactobacillus acidophilus.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.