Abstract
Food supply for deposit feeders varies from highly seasonal phytodetritus to a steady source of older organic matter, resulting in contrasting patterns of nutrient uptake and storage. To identify patterns in energy storage and feeding behaviour driven by different food conditions for the circumpolar deposit-feeding protobranch bivalve Yoldia hyperborea, we measured variations in cytological (digestive cell height) and biochemical (lipid class, fatty acid, glycogen, and protein content) components during controlled experiments. Three treatments with organisms in sediment with high refractory organic matter (12 % OM) were exposed to different feeding regimes resembling (a) the annual spring bloom settlement, (b) low food availability during winter, and (c) sporadic resuspension events. Yoldia exposed to a diatom-supplemented diet showed significantly higher mean values for digestive cell height (28.44 μm), glycogen (30.4 mg g−1 dry mass, DM), diatom-specific fatty acids, and total lipid (TL) levels (14.4 mg g−1 DM), but lower protein concentrations, than in non-supplemented treatments (digestive cell height 20.34 μm; glycogen 9.23 mg g−1 DM; TL 6.7 mg g−1 DM). All analyses showed no effect of resuspension events; thus, it was unlikely that resuspension improved sediment nutritional value. In the absence of recently deposited diatoms, Y. hyperborea did not increase nutrient storage, suggesting that significant amounts of older refractory OM are not used for growth or reproduction. The rapid storage of nutrients derived from diatoms demonstrates the role of seasonal episodic events of settling algae in the nutrition of subpolar Y. hyperborea and in the transfer of energy from the water column to the benthos.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.