Abstract

This study investigates the influence of an imidazolium salt as initiator for the curing of an epoxy novolac-based hot-melt prepreg resin system for production of non-structural aircraft components. The salt decomposes at a specific temperature during curing, yielding an imidazole. This molecule initiates a fast anionic homopolymerization. The effect of the imidazolium salt on the curing kinetics is studied extensively by differential scanning calorimetry (DSC) as a function of its concentration. Onset and peak temperatures of the curing reactions are determined from dynamic DSC experiments at various heating rates. The curing behaviour at 140 °C is analysed in more detail by isothermal DSC measurements. Calculated isothermal conversion curves prove that the flame retarded epoxy novolac formulation can be cured within less than 60 min at this specific temperature by introducing six parts of the imidzolium salt per hundred parts of preformulated resin. At the same time glass transition temperatures above 130 °C evaluated by DSC or app. 155 °C determined by DMA can be reached.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call