Abstract

This paper presents a method of floating bubbles in liquid metal by applying an electromagnetic field. The aim of this method is to distribute the bubbles more homogeneously and to stop drainage in the generation process of metal foam. A horizontal electric current, combined with an orthogonal, horizontal magnetic field creates an upward Lorentz force that counteracts gravitational acceleration. Phase-resolving numerical simulations have been applied in order to investigate the complex behavior of a large number of bubbles exposed to these fields. Controlled by the strength of the electromagnetic fields, the bubbles can ascend more slowly, stagnate, or even descend. Due to the influence of the bubbles on the electric current, however, rotating flows are induced which prevent the bubbles from becoming immobile and induce an interesting mixing structure. Consequently, the applied electromagnetic field offers the opportunity to manipulate the bubble distribution and the drainage in the generation process of wet metal foam.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.