Abstract
The authors study shear flow in hybrid-aligned nematic cells under the action of an applied electric field by solving numerically a hydrodynamic model. The authors apply this model to a flow-aligning nematic liquid crystal (4'-n-pentyl-4-cyanobiphenyl) and obtain the director's configuration and the velocity profile at the stationary state. The authors calculate the local and apparent viscosities of the system and found that the competition between the shear flow and the electric field gives rise to an interesting non-Newtonian response with regions of shear thickening and thinning. The results also show an important electrorheological effect ranging from a value a bit larger than the Miesowicz viscosity etab [Nature (London) 17, 261 (1935)] for small electric fields and large shear flows to etac for large electric fields and small shear flows. The analysis of the first normal stress difference shows that for small negative shear rates, the force between the plates of the cell is attractive, while it is repulsive for all other values of shear rates. However, under the application of the electric field, one can modify the extent of the region of attraction. Finally, the authors have calculated the dragging forces on the plates of the cell and found that it is easier to shear in one direction than in the other.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.