Abstract
In this article we formulate and solve the problem of the influence of radiation forces (forces created by the radiation pressure) on two spheres in a viscous fluid during the transmission of an acoustic wave. On the basis of these forces we investigate the nature of the interaction between the spheres as determined by the mutual disturbance of the flow fields around them as a result of interference between the primary and secondary waves reflected from the spheres. A previously proposed [2] approach is used in the investigations. The radiation force acting on one of the spheres is filtered by averaging the convolution of the stress tensor in the fluid with the unit normal to the surface of the sphere over a time interval and over the surface of the sphere. The stresses in the fluid are represented, to within second-order quantities in the parameters of the wave field, in terms of the velocity potentials obtained from the solution of the linear problem of the diffraction of the primary wave by the free spheres. The diffraction problem is formulated and solved within the framework of the theory of linear viscoelastic solids [6]. The case of an ideal fluid has been studied previously [3–5, 7]. Radiation forces are one of the causes of the relative drift of solid particles situated in a fluid in an acoustic field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: International Applied Mechanics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.