Abstract
In this research, a method for direction control of a primary jet with a Coanda surface is investigated as part of a fundamental study of fluidic thrust vectoring. The effect of the velocity amplitude ratio (i.e., ratio of time-averaged velocity to velocity fluctuation amplitude) of the secondary flow on the flow characteristics of the jet was experimentally investigated. It was determined that the jet deflection angle was maximized under the suction condition wherein the secondary flow exhibited velocity fluctuation. The relationship between the jet deflection angle and the momentum ratio between the primary jet and the secondary flow is presented, in which the dimensionless frequency of the secondary flow was used as a parameter. Although the jet deflection angle depended on the dimensionless frequency and the momentum ratio, it was difficult to adjust this parameter using only the momentum ratio in the hypothetical saturated region where this ratio is large. In addition, unsteady characteristics were also discussed for several conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.