Abstract
AbstractFully degradable natural fiber/degradable polymer composites have received much research attention and have various applications such as in automotive components. But flammability limits their application; it is important to improve the flame retardancy of fully degradable composites with environmentally friendly flame retardants. Flame‐retarded ramie fiber‐reinforced poly(lactic acid) (PLA) composites were prepared using three processes: (1) PLA was blended with ammonium polyphosphate (APP), and then the resulting flame‐retarded PLA was combined with ramie fibers; (2) ramie fibers underwent flame‐retardant treatment with APP, which were then compounded with PLA; and (3) PLA and ramie, both of which had been flame‐retarded using APP, were blended together. The APP in the composites is shown to be very effective in improving flame retardancy according UL94 test and limiting oxygen index measurements. Thermogravimetric analysis shows that the improved flame retardancy is due to increased char residue at high temperature. The loading of APP disturbs the compatibility between PLA and fibers, which can be directly observed using scanning electron microscopy. Furthermore it has an influence on the dynamic mechanical properties and mechanical properties according dynamic mechanical analysis and mechanical measurements. The results show that composites produced using the third process not only have the best flame retardancy but also comparatively better mechanical properties. Copyright © 2009 Society of Chemical Industry
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.