Abstract

The primary aim of the research is to determine the capatibilities of modern noninvasive diagnostics for characterising the sprays produced by a practical gas turbine atomizer when operating at realistic engine conditions of pressure, fuel type, and fuel-air throughput. A single-velocity-component Phase Doppler Particle Analyzer is used to measure local variations of drop-size distributions and drop velocities along three spray radii at downstream distances from the atomizer of 50 and 70 mm. In the 50-mm plane, excessive signal rejection rates limit measurements to a maximum air pressure of 9 bar and a maximum kerosine flow rate of 18.6 g/s. At the 70-mm measurement plane, satisfactory results are obtained at air pressures up to 12 bar and fuel-flow rates up to 24.8 g/s. The results show that increases in ambient air pressure lead to larger mean drop sizes and lower mean drop velocities in the spray. This is attributed to the fact that the beneficial effect of an increase in air pressure in raising Weber number is more than offset by several adverse factors, all of which are related to the increase in fuel-flow rate that accompanies an increase in air pressure at constant fuel/air ratio.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call