Abstract

Experimental studies of laminar ethanol - air gaseous flames have been undertaken in a large (34 l) cylindrical constant volume combustion bomb to investigate combustion fundamentals at varying ambient conditions. This vessel has been designed to minimise the influence of boundary walls, hence extending the quasi steady pressure region over which meaningful data may be obtained. Gaseous homogeneous mixtures are achieved by injecting liquid ethanol into the bomb which pre-vaporises prior to ignition. Initial pressure and equivalence ratio are predetermined using partial pressure methodology. Flame propagation is recorded utilising high-speed Schlieren photography, and low ignition energies were achieved via a variable discharge system enabling the sensitive early stages of flame propagation and extinction limits to be studied. Data is presented in terms of flame speed against stretch rate from which Markstein lengths and laminar burning velocities are derived for a variety of different initial conditions. The effect of ignition energy, initial pressure (from sub-atmospheric to elevated pressure) along with the effect of increasing initial temperature is studied. Results are discussed in terms of those of previous workers, and compared with predictions from detailed chemical kinetic schemes. Nonlinear trends witnessed during early stage flame propagation are further investigated as a suitable method for deriving extinction stretch rate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.