Abstract

ABSTRACTPresent investigation studied plant water relations and soil physical properties through AM fungi (Glomus mosseae) to mitigate drought stress in Himalayan acid Alfisol having low water retentivity. Experimentation was carried out at Palampur, India during 2009–2011 in okra–pea cropping system in randomized block design (RBD) replicated thrice with 14 treatments comprising arbuscular mycorrhizal (AM) fungi, varying phosphorus nutrition and irrigation regimes at 40 and 80% available water holding capacity. Integrated use of AM fungi at varying phosphorus (P) levels and irrigation regimes led to significantly higher relative leaf water content (3% each) in okra and pea besides significantly higher xylem water potential (27%) in pea over non-AM fungi counterparts. AM fungi enhanced water-use-efficiency in okra (5–17%) and pea (12–35%) over non–AM fungi counterparts. AM fungi also improved water holding capacity (5–6%) and mean weight diameter of soil particles (4–9%) over non–AM fungi counterparts; but, had nominal or no effect on bulk density. Mycorrhizal plants maintained higher tissue water content imparting greater drought resistance to plants over non–mycorrhizal plants at moisture stress. It is inferred that integrated application of AM fungi and P at varying irrigation regimes improved the plant water relations vis-à-vis drought resistance, crop productivity, WUE, soil aggregation and water holding capacity in okra–pea sequence in Himalayan acid Alfisol.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call