Abstract

By treating Al4C3 as the precursor and growth environment, graphene nanosheets (GNs) can efficiently be derived from coal-tar pitch, which has the advantages of simple preparation process, high product quality, green environmental protection, low equipment requirements and low preparation cost. However, the defects in the prepared GNs have not been well understood. In order to optimize the preparation process, based on density functional theory calculations, the influence mechanism of Al-O and Al-C clusters on defects in GNs derived from coal-tar pitch via Al4C3 precursor has been systematically investigated. With minute quantities of oxygen-containing defects, Al-O and Al-C clusters have been realized in the prepared GNs from X-ray photoelectron spectroscopy analysis. Therefore, the influences of Al-O and Al-C clusters on graphene with vacancy defects and oxygen-containing defects are systematically explored from theoretical energy, electron localization function and charge transfer analysis. It is noted that the remaining Al-O and Al-C clusters in GNs are inevitably from the thermodynamics point of view. On the other hand, the existence of defects is beneficial for the further adsorption of Al-O and Al-C clusters in GNs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call