Abstract

In this paper, we look at how different nickel concentrations (4, 8, and 12 percent) affect the microstructure, microhardness, and dry sliding wear behaviour of a Cu-Zn-xNi alloy. The alloy was created using a casting technique at 1100°C and a heat treatment method that included solution treatment at 600°C and ageing at 450°C for four hours each. Microstructure studies were performed on the developed alloys using a scanning electron microscope (SEM). To investigate alloy indentation resistance, an ASTM E384 microhardness test was performed. Tribological properties such as friction and wear were investigated using a pin on disc tribometer and a dry sliding wear test according to the ASTM G99 standard. SEM studies revealed α-phase (copper) and solid solution of zinc in cast alloys, while aged alloys revealed a similar structure but with the addition of Cu2NiZn precipitates. The microhardness values improved as the Ni content and ageing increased. The decrease in secondary dendrite arm spacing with increasing Ni content and ageing was attributed to the improvement. The coefficient of friction decreased as the load increased, but increased as the sliding velocity increased. However, as loads and sliding velocities increased, so did the wear rate. For the majority of loads and sliding velocities, the worn surface demonstrated abrasion as the dominant wear mechanism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.