Abstract

The effect of two alkylpyridinium ionic liquids (py-iLs) including N-butylpyridinium hydrogen sulfate (BpyHSO4) and N-hexylpyridinium hydrogen sulfate (HpyHSO4) on the kinetics of copper electrodeposition from acidic sulfate solution was investigated by cyclic voltammetry and potentiodynamic polarization measurements. Results from cyclic voltammetry indicate that these py-iLs have a pronounced inhibiting effect on Cu2+ electroreduction and there exists a typical nucleation and growth process. Kinetic parameters such as Tafel slope, transfer coefficient and exchange current density obtained from Tafel plots, lead to the conclusion that py-iLs inhibit the charge transfer by slightly changing the copper electrodeposition mechanism through their adsorption on the cathodic surface. In addition, scanning electron microscope (SEM) and X-ray diffraction analyses reveal that the presence of these additives leads to more leveled and fine-grained cathodic deposits without changing the crystal structure of the electrodeposited copper but strongly affects the crystallographic orientation by significantly inhibiting the growth of (111), (200) and (311) planes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call