Abstract

The hydrolysis of 4-alkoxy-substituted acetals was accelerated by about 20-fold compared to that of sterically comparable substrates that do not have an alkoxy group. Rate accelerations are largest when the two functional groups are linked by a flexible cyclic tether. When controlled for the inductive destabilization, an alkoxy group can accelerate acetal hydrolysis by up to 200-fold. The difference in rates of acetal hydrolysis between a substrate where the alkoxy group was tethered to the acetal group by a five-membered ring compared to one where it was tethered by an eight-membered ring was less than 100-fold, suggesting that fused-ring intermediates were not formed. By comparison, the difference in rates of solvolysis of structurally related tosylates were nearly 10(6)-fold between the five- and eight-membered ring series. This observation implicates neighboring-group participation in the solvolysis of tosylates but not in the hydrolysis of acetals. The acceleration of acetal hydrolysis by an alkoxy group is better explained by electrostatic stabilization of intermediates that accumulate positive charge at the acetal carbon atom.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.