Abstract

Algal-bacterial photobioreactors have emerged as a cost-effective platform for biogas upgrading. The influence on biomethane quality of the inorganic carbon concentration (1500, 500 and 100 mg L−1) and temperature (12 and 35 °C) of the cultivation broth was evaluated in a 180 L high rate algal pond (HRAP) interconnected to a 2.5 L absorption column via settled broth recirculation. The highest CO2 and H2S removal efficiencies (REs) from biogas were recorded at the highest alkalinity (CO2-REs of 99.3 ± 0.1 and 97.8 ± 0.8% and H2S-REs of 96.4 ± 2.9 and 100 ± 0% at 12 and 35 °C, respectively), which resulted in CH4 concentrations of 98.9 ± 0.2 and 98.2 ± 1.0% at 12 and 35 °C, respectively, in the upgraded biogas. At the lowest alkalinity, the best upgrading performance was observed at 12 °C (CO2 and H2S-REs of 41.5 ± 2.0 and 80.3 ± 3.9%, respectively). The low recycling liquid to biogas ratio applied (0.5) resulted in a negligible O2 stripping regardless of the alkalinity and temperature, which entailed a biomethane O2 content ranging from 0 to 0.2 ± 0.3%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.