Abstract

A new type of glass from the Na2O–MeO–Al2O3–SiO2–LaF3 system where MeO = MgO, CaO, BaO and SrO has been studied. The aim of the investigation was to determine, by means of thermal techniques (DTA and DSC), the influence of alkaline earth ions additions on its thermal stability and the ability of LaF3 phase to crystallization. The effect of LaF3 crystallization was analyzed in connection with glass composition expressed by the Al2O3/(MeO + Na2O + 3La2F6) ratio varying from 0.4 to 0.8 for the alkaline earth admixtures. The compositions of the glasses have been designed so as to make it possible to define the effect of the charge of the ion modifiers (Na+, Me2+, La3+) on the alumina position in the framework of the glass. Two series of glasses were obtained with a different F− content. The formation of LaF3 depends directly on the strength of the network and can be control by the Al2O3/modifiers ratio as well as the content of fluorine ions. Generally, it can be stated that transparent glass-ceramic with nanocrystallization of LaF3 can be obtained for Al2O3/(Na2O + MeO + 3La2F6) ≤0.6 in the examined glasses. The more the ionicity of the alkaline earth ions the greater the tendency for the crystallization of Me2LaF7 and MeF2. In the glass structure the substitution of oxygen ions by F− ions facilitated the crystallization of LaF3. Simultaneously, it influenced the thermal stability of the aluminosilicate network and induced the crystallization of appropriate silicates during the heat treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.