Abstract

Benzyl phenyl ether conversion in superheated water yields a broad product distribution. In addition to the hydrolysis products, phenol and benzyl alcohol, a large amount of consecutive products are formed depending on the operating conditions. The influence of Li2CO3, Na2CO3, and K2CO3 on these reactions is explored between 270 and 370°C. It is shown that high selectivity towards hydrolysis can be achieved at low temperatures and short reaction times. At higher severities the yields of phenol and especially benzyl alcohol decrease and higher molecular weight compounds are formed by consecutive reactions. Alkali carbonates effect this distribution by decreasing the concentration of protons in the system and by providing and enhancing parallel and secondary reaction mechanisms. The yields of toluene, 2 and 4-benzyl phenol are strongly enhanced in the presence of an alkali carbonate, by formation of a cation–BPE adduct in which the ether bond is strongly polarized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.