Abstract

In the literature, there are many data available on radionuclide contents and their transfer to different species of mushrooms. There are some variables, however, which affect the transfer but are very difficult to observe in collected wild mushrooms. An example is the effect of different concentrations of alkali and alkaline earth elements in the soil. Modification of these concentrations in the soil solution has traditionally been used as a countermeasure to deal with radioactively contaminated areas. In the present work, fruiting bodies of Pleurotus eryngii, a saprophytic mushroom, were grown under controlled laboratory conditions, varying the content of alkali (potassium and cæsium) and alkaline earth (calcium and strontium) elements. The transfer of 134Cs, 85Sr, and 60Co (added to the cultures) and of natural 210Pb was analysed by increasing the content of each stable element considered. A significant, but nonlinear, enhancement of stable cæsium and 134Cs was observed with increasing content of stable cæsium in the substrate/mycelium. The transfer of 85Sr decreased with the addition of each stable cation, whereas the 60Co and 210Pb transfers were unaffected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.