Abstract

We investigate the influence of the AlGaN barrier thickness in Al0.14Ga0.86N/GaN heterostructures on both the electrical properties of the heterostructure itself as well as on high electron mobility transistors fabricated on these structures. With increasing barrier thickness, we observe decreasing sheet resistances, transconductances, and threshold voltages. The observed changes are well-described by modelling. We demonstrate that an increase in the barrier thickness in AlGaN/GaN heterostructures results in an increase in available high-frequency input power swing before turn-on of the Schottky gate. The device long-term stability under direct current stress is not affected by the increase in barrier thickness as shown by on-wafer reliability tests at 150 °C base plate temperature. These results pave the way towards AlGaN/GaN transistors offering high robustness under extreme mismatch conditions as well as excellent high-frequency power performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.