Abstract

One of the main origins of fugitive dust emission arises from bulk handling in quarries or mines, in particular, from bulk materials falling from a hopper or a conveyor belt. Water-spraying systems, using two-phase nozzles, are one of the methods to suppress such dust emission. In this work we tried to develop a mathematical model to correlate air humidity, water flux through the nozzle and the dust (in particular PM10) emission, in order to improve the application and efficiency of these systems. Sand from the Yellow River in China was dropped from a conveyor belt into a dust chamber at 1 kg·min −1, wherefrom the emitted dust was sucked off and quantified via a cascade impactor. A two-phase nozzle was installed in the dust chamber with a water flux through the nozzle of 1.2 to 3 L·h −1, whereas the relative air humidity changed between 55 and 73%. Dust emission was found to be linearly dependent on relative air humidity. Furthermore model equations were developed to describe the dependence of PM10 emission on water flux and relative air humidity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.