Abstract

The size distributed composition of ambient aerosols is used to explore seasonal differences in particle chemistry and to show that dry deposition fluxes of soluble species, including important plant nutrients, increase during periods of biomass (sugar cane trash) burning in São Paulo State, Brazil. Measurements were made at a single site centrally located in the State's sugar cane growing region but away from the immediate vicinity of burns, so that the airsampled was representative of the regional background. Calculation of ion equivalent balances showed that during burning periods smaller particles (Aitken and accumulation modes) were more acidic, containing higher concentrations of SO4(2-), oxalate, NO3-, HCOO-, CH3COO-, and CI-, but insufficient NH4+ and K+ to achieve neutrality. Larger particles showed an anion deficit due to the presence of unmeasured ions and comprised resuspended dusts modified by accumulation of nitrate, chloride, and organic anions. Increases of resuspended particles during the burning season were attributed to release of earlier deposits from the surfaces of burning vegetation as well as increased vehicle movement on unsurfaced roads. During winter months the relative contribution of combined emissions from road transport and industry diminished due to increased emissions from biomass combustion and other activities specifically associated with the harvest period. Positive increments in annual particulate dry deposition fluxes due to higher fluxes during the sugar cane harvest were 44.3% (NH4+), 42.1% (K+), 31.8% (Mg2+), 30.4% (HCOO-), 12.8% (CI-), 6.6% (CH3COO-), 5.2% (Ca2+), 3.8% (SO4(2-)), and 2.3% (NO3-). Na+ and oxalate fluxes were seasonally invariant. Annual aerosol dry deposition fluxes (kg ha(-1)) were 0.5 (Na+), 0.25 (NH4+), 0.39 (K+), 0.51 (Mg2+), 3.19 (Ca2+), 1.34 (Cl-), 4.47 (NO3-), 3.59 (SO4(2-)), 0.58 (oxalate), 0.71 (HCOO-), and 1.38 (CH3COO-). Contributions of this mechanism to combined aerosol dry deposition and precipitation scavenging (inorganic species, excluding gaseous dry deposition) were 31% (Na+), 8% (NH4+), 26% (K+), 63% (Mg2+), 66% (Ca2+), 32% (Cl-), 33% (NO3-), and 36% (SO4(2-)).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.