Abstract

Ultraviolet light cured-in-place pipe is a popular trenchless rehabilitation technology used to repair existing buried pipelines without soil excavation. A polymer composite liner is manufactured directly in the field. After curing is complete, the new liner is placed in service to convey flowing water. Long-term water exposure has the potential to degrade the fiber reinforced cured-in-place pipe liners. Like other composites, liner hygrothermal stability could be a major challenge, especially for undercured materials. The objective of this study was to investigate the effect of aggressive environmental conditions such as water, salt solution, and simulated concrete pore solution at 50℃ on cured-in-place pipe liner mechanical and thermo-mechanical performance. Liners were exposed to aqueous solutions ranging from a typical exposure environment to a very aggressive alkaline environment. Cured-in-place pipe liner samples were collected from New York storm sewer installation sites. Specimens were assessed for the degree of curing as determined by differential scanning calorimetry and TGA. Samples were then immersed in aforementioned solutions for investigating the stability of the liners as a function of degree of cure. Both interlaminar shear strength and thermo-mechanical properties significantly differed based on the degree of cure. Cured-in-place pipe liner mechanical and thermo-mechanical properties were significantly impacted by water, salt, and pore solutions exposure. Long-term exposure to salt and alkaline environments may have a detrimental effect on the performance of cured-in-place pipe liners and desires additional scrutiny.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.