Abstract

The influence of aggregates and solvent aromaticity on the photophysics and fluorescence dynamics of two conjugated polymers is studied. The two polymers are derivatives of poly(p-phenylene vinylene) (PPV) containing different kinked moieties along the main chain. The polymers contain 2,6-diphenylpyridine and m-terphenyl kinked moieties and they are abbreviated as PN and PC, respectively. The insertion of kinked segments along the main chain shifts the emission spectrum from the yellow-orange spectral region, common to PPV derivatives, to the blue-green spectral region. The results show that in dilute solutions the polymers decay monoexponentially, while in concentrated ones the fluorescence decays biexponentially, indicating fluorescence quenching. This is attributed to an energy transfer process from polymer chains to aggregates that occurs within a few tens of picoseconds. By comparing the photophysics and fluorescence dynamics of polymer PN in a nonaromatic and an aromatic solvent, we conclude that the polymer conformation adopted in the aromatic solvent leads to a higher fluorescence quantum yield and a longer fluorescence lifetime. Furthermore, the fluorescence quenching of PN because of aggregates is faster and more efficient in the aromatic than in the nonaromatic solvent. These results can be explained through a more extended chain conformation of PN in the aromatic solvent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call