Abstract

Atomistic scale models were developed and coupled with experimental investigation to deliver a functional understanding of catalytic activity and selectivity in the conversion of ethanol to 1,3-butadiene over Ag/ZrO2/SiO2. A detailed evaluation of the structural and electronic properties of the resultant catalyst models led to the identification of critical active sites of the catalyst. More importantly, the extent of Ag dispersion on the SiO2 support and relative proximity to ZrO2 were found to vary with the oxidation state of Ag and local coordination environment (Ag-OSiO2), allowing for critical control of ethanol conversion towards butadiene or ethylene. Simulations revealed that less dispersed or clustered Ag contain predominantly Ag0 charge state and promote conversion of ethanol to ethylene. The well-dispersed Ag/ZrO2/SiO2 catalyst instead contain a larger fraction of cationic Agδ+ and predominantly promote ethanol dehydrogenation and subsequent production of butadiene. The theoretical insights drawn were validated and confirmed experimentally using TEM, XRD and reactivity measurements demonstrating the effect of Ag dispersion on the selectivity of ethanol conversion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.