Abstract

In this paper, a new mechanism is proposed by which aerosols decrease the amount of photosynthetically active radiation (PAR) available to plants for photosynthesis. The mechanism involves the scattering and absorption of PAR by water insoluble aerosol particles (WIA) which deposit on leaves and are not washed off by precipitation. A simple model is developed that predicts the change in the transmittance of PAR, TPAR, for plant leaves due to WIA dry deposition as a function of aerosol chemical, physical, and optical properties. Model estimates for the agricultural Yangtze delta region of China indicate that over a 2‐month period during a growing season, dry deposition of WIA may account for a ∼35% reduction in PAR available for plant photosynthesis. Although, the estimate is sensitive to several factors that are uncertain including aerosol dry deposition velocity, leaf area index, and removal rate of particles by precipitation. Results suggest that impacts on crop yields due to aerosol dry deposition could be considerable in this region and suggest a previously neglected economic incentive for China to mitigate air pollution. Additionally, WIA dry deposition may influence carbon uptake by plants in other locations that experience regional haze.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.