Abstract

The photochemical properties of nitric oxide on a mixed oxide single crystal surface was examined in ultrahigh vacuum (UHV) using temperature programmed desorption (TPD), photon stimulated desorption (PSD) and low energy electron diffraction (LEED). The mixed oxide was a 75% Fe and 25% Cr corundum (0001) oxide film prepared on an α-Al2O3(0001) crystal, however its surface became terminated with a magnetite-like (111) structure after sputter/anneal cleaning, leading to a surface designated of (Fe,Cr)3O4(111). TPD of NO from the (Fe,Cr)3O4(111) surface revealed three chemisorbed states at 220, ~315 and 370 K assigned to NO binding at Fe3+, Cr3+ and Fe2+ sites, respectively. No significant thermal chemistry of NO was detected. NO photodesorption, the primary photochemical pathway in UHV, was sensitive to the adsorption site, with rates at the three adsorption sites following the trend: Fe3+ > Fe2+ > Cr3+. Multiexponential rate behavior seen in the overall NO PSD spectra was linked directly to site heterogeneity being manifested as a convolution of the individual NO photodesorption rates at the three types of surface sites. The photodesorption rate with UV light (365 nm) was ~10 times greater than that in the visible, but the per-photon rates across the visible spectrum (from 460 tomore » 630 nm) were independent of the wavelength, which is suggestive of localized photon absorption at the adsorption site. Results in this study demonstrate that the adsorption site plays a critical role in determining photochemical rates on complex oxide surfaces. This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multi-program national laboratory operated for DOE by Battelle. The research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.« less

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call