Abstract

The casting WC particles reinforced steel matrix composite coatings on Cr15 steel substrate were fabricated using the vacuum infiltration casting technique, meanwhile, investigated the relationship between the structure, hardness and the volume fraction of tungsten-iron powder in the composite coatings. The fabricated composite coatings contained tungsten-iron powder of 4.96, 9.31, 17.15 and 23.64 vol%, respectively. The microstructures and phase of the composite coatings were analyzed using Optical Microscope (OM), Scanning Electron Microscope (SEM) and X-Ray Diffraction (XRD). The results shows that, with increase in volume fraction of tungsten-iron powder, the amount of martensite and in situ synthesized Fe3W3C have increased. The changes of the hardness in the composite coatings with the volume fraction of tungsten-iron powder, and the hardness has been improved greatly, the highest hardness value can reach HRC 65. In addition, the reacted layers have been formed around the WC particles and mainly consist of Fe3W3C, therefore, the interfacial strength is increased significantly. However, tungsten element in the matrix hampered the melting of the WC particles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call