Abstract

The CoSb3-based compound is a promising thermoelectric material useful in the temperature range of 600­900K. It, however, has a higher thermal conductivity. Thus, reducing the thermal conductivity causes improvement of the thermoelectric performance. In this work, we tried to reduce the thermal conductivity by both filling La and dispersing alumina nanoparticles (ANPs) into the compound. The raw powders of LaSb, Co, Ni, Sb and Te were prepared. The n-type La-filled compound was synthesized from the raw powders using a planetary ball mill. Then, ANPs were added to the combined powder and further mixed using the planetary ball milling. The mixture was sintered by a pulse-discharge sintering method. The combining phases of the samples were characterized by X-ray diffraction analysis. The thermoelectric properties were measured for the samples. Influence of addition of ANPs on the properties was studied. Adding 0.05mass% ANPs reduced the thermal conductivity. The sample added 0.5mass% or more ANPs increased both the electrical resistivity and the thermal conductivity. As a result, the sample added 0.05mass% ANPs had the maximum performance of ZT = 1.15 at 873K. [doi:10.2320/matertrans.E-M2012821]

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.