Abstract
Many modern ciphers have a substitution-permutation (SP) network as a main component. This design is well researched in relation to Advanced Encryption Standard (AES). One of the ways to improve the security of cryptographic primitives is the use of additional nonlinear layers. However, this replacement may not have any effect against particular cryptanalytic attacks. In this paper we use algebraic attacks to analyze an SP network with addition modulo 2n as the key mixing layer. In particular, we show how to reduce the number of intermediate variables in round functions based on SP networks. We also apply the proposed method to the GOST 28147-89 block cipher that allows us to break reduced 8- and 14-round versions with complexity at most 2155 and 2215.4, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.